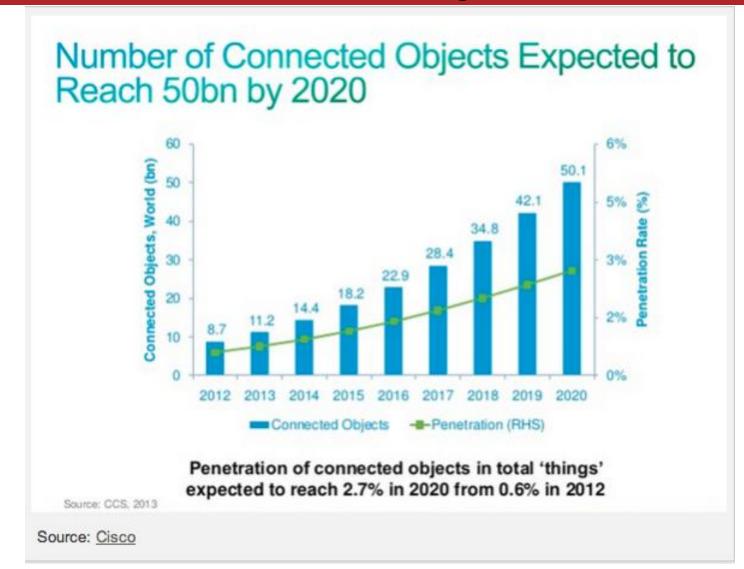

RESCOM Summer School

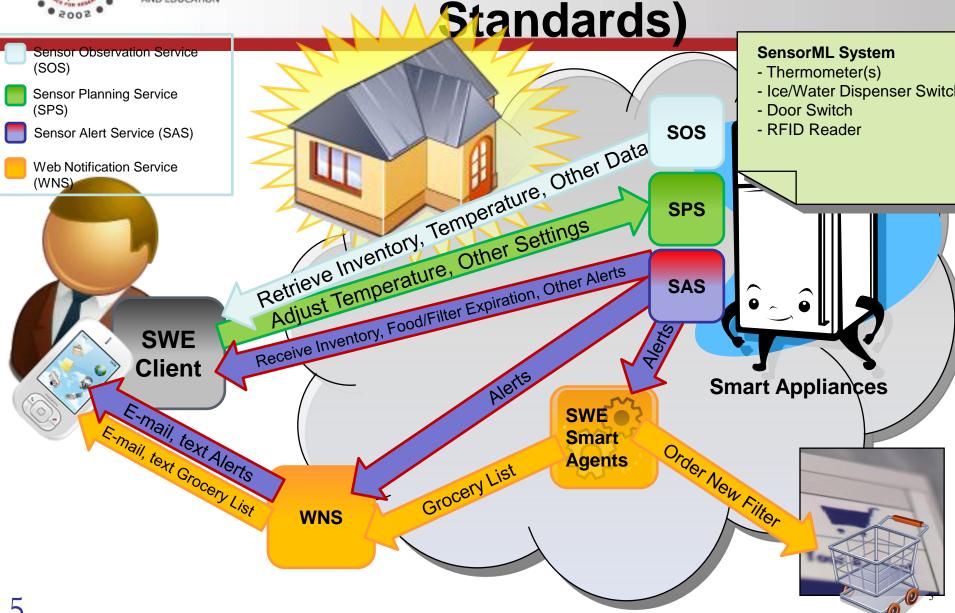
Internet-of-Things (IoT) Technologies for Smarter Cities John Soldatos (jsol@ait.gr)

Lyon, June 23rd, 2015


Internet-of-Things

CENTER OF EXCE

Number of Internet Connected FOR RESEARCH AND EDUCATION **Objects**


IoT Application Areas

Source: J. Gubbi et al. / Future Generation Computer Systems 29 (2013) 1645–1660

Sample IoT Application (OGC

CENTER OF EXCELLENCE FOR RESEARCH AND EDUCATION

Smart Cities

Human Capital Intellectual & Social Capital

Infrastructure (incl. ICT) Sustainable Development Economy Growth

Quality of Life Participatory Governance Improved Management of Natural Resources

Smart Cities Market

Source: Frost & Sullivan "Global Smart City Market – A \$1.5 Trillion Market Opportunity by 2020", Market Report, September 2013.

Smart City Market by Segments,¹ Global, 2020

Expected market growth: From \$6.1 billion annually in 2012 to \$20.2 billion in 2020 (i.e. 16.2% CAGR)

Dominant Areas: Energy, transportation, government

Other Smart Infrastructure such as sensor networks, digital management of water utilities not included in other segments

Source: Frost & Sullivan analysis.

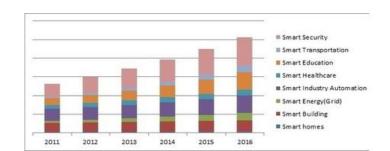
FROST & SULLIVAN

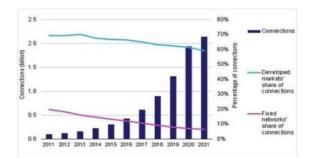
Smart Cities Stakeholders & Roles

Source: Smart City Framework, Cisco, 2012

Policy	Regulators	Developers	Owners	Operators
 Governments at all levels set policies: Federal State Local Regional European Union United Nations Think tanks, consultants, the public, NGOs, universities, and others all influence policy 	 Regulators influence and create policy, as well as monitor policy adherence Semi-government agencies and NGOs often perform a quasi-regulatory role in that they influence policy 	 Developers include real estate, utilities, transportation, and city services Developers contract with architects, designers, consultants, and general contractors, as well as arrange financing Developers may be speculative and hand off assets to owners, such as pension-fund owners 	 Owners include real estate, utilities, transportation, and city services entities Owners / developers may be the same entity Owners often own assets long term (e.g., pension funds / infrastructure funds) Owners often appoint third parties to manage assets 	 Operators comprise various groups, such as: Real estate and facilities managers who act on behalf of the owner (e.g., Hochtief, JLL) Government- owned public entities, such as water, power, and transportation Private operators of utilities, transportation, and city services

Users of City Services / Infrastructure

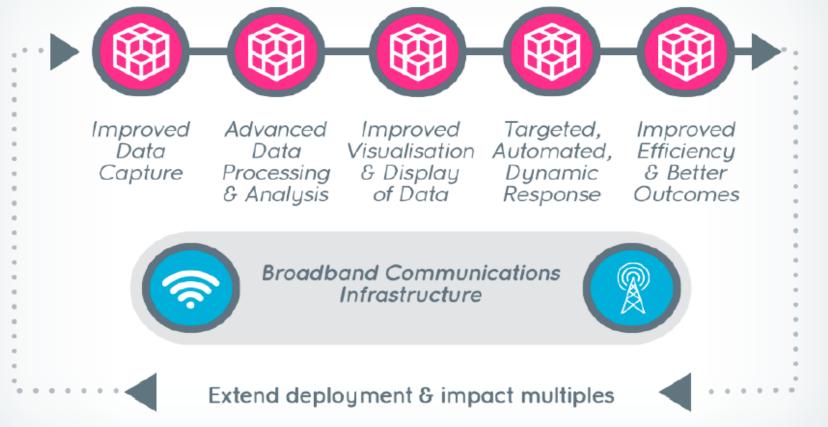

Smart Cities and Internet of Things


Smart Cities are based on broadband and IoT infrastructures (e.g., sensors)

Smart City Applications Handle Data Streams (from different information), and deal with multiple events

Smart Applications (Smart Home, Smart Transport, Smart Buildings, Smart Police Activiies,...)

Environment for Integrated Surveillance (leverage sensors from municipalities, city authorities, community sensors...)



Smart Cities - Data Processing & Analytics

Source: JScottish Cities Alliance, "Smart Cities Maturity Model and Self---Assessment Tool", Guidance Note for completion of Self---Assessment Tool January, 2015

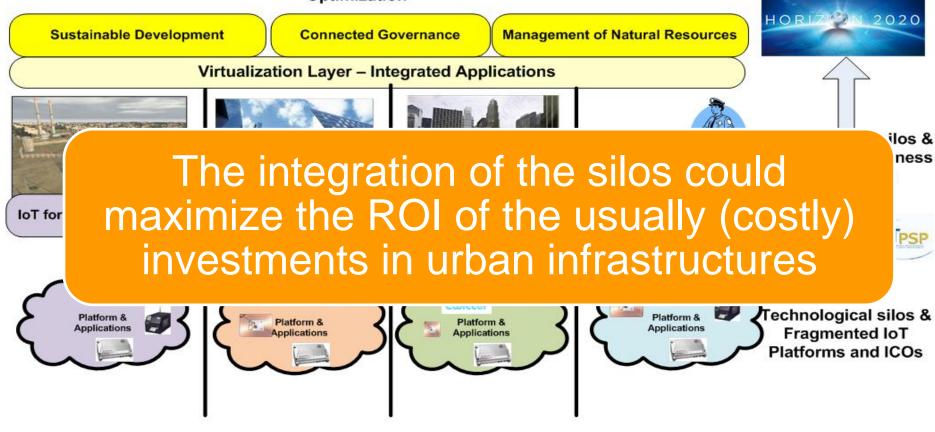
Maturity Models

Phase 1 – Digital Infrastructure

- Broadband Networks Sensor Networks, (Public Open Data)
- Certification & Validation of Infrastructures
- Digital City

Phase 2 – Services Development

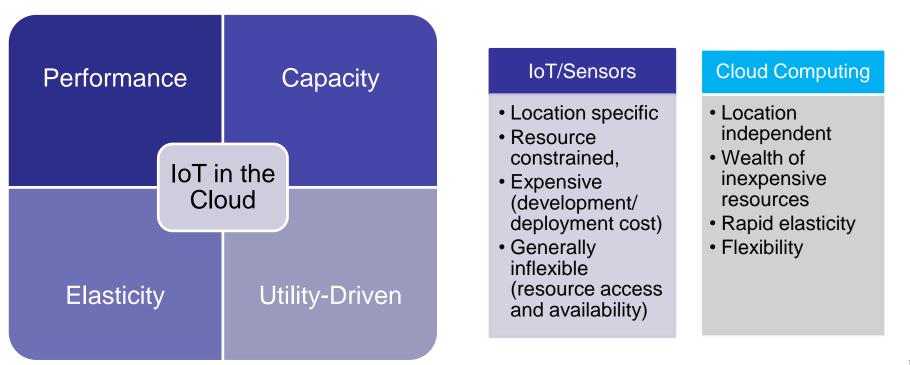
- Smart Energy, Smart Transport, Urban Mobility
- Stakeholders' Involvement
- "Smart City"


Phase 3 – Services Integration & Citizens Participation

- Integration and Reusability of Data & Services
- Citizens' Engagement
- Integrated Smart City

Challenge: Smart Cities Silos Integration

Process Integration, Integrated Security, Enhanced Intelligence, City Operations Optimization



Fragmented ICOs Access, Fragmented Intelligence, Fragmented Security, Limited Data Sharing, Limited Integration

IoT / Cloud Convergence

- Convergence IoT Between IoT and Cloud Computing
 - Allow IoT applications to leverage the benefits of the Cloud
- Challenge
 - Conflicting properties of IoT (e.g., WSN) and Cloud

CENTER Sensor Clouds and IoT Clouds

- Streaming of Sensor / WSN data in a cloud infrastructure (2005-2009) (Mainly Research Efforts)
- Advent of Public IoT Clouds (2007+ including commercial efforts) e.g.,:
 - Xively (xively.com)
 - ThingsWorx (<u>www.thingworx.com</u>)
 - ThingsSpeak (thingspeak.com)
 - Sensor-Cloud (<u>www.sensor-cloud.com</u>)
 - Realtime.io (https://realtime.io/)
 - ... And many more

Lack of Semantic Interoperability

- Most Sensor Clouds focus on the integration of data streams within the cloud
 - Including a syntactic harmonization of the data streams
 - Use of CSV, XML, JSON format
 - Suitable for Intra-Enterprise Applications
- Lack of semantic interoperability
 - Foundation for Inter-Enterprise Applications in global IoT
 - Common Semantics Uniform / Global Discovery of IoT Resources
 - Foundation for Integrated Smart City Applications that bridge existing silos

Ontologies for IoT Semantic Interoperability

Semantic Interoperability

- Distributed and Heterogeneous Data Sources
- Diverse Data Streams

• Cor • Sc

Or

Deployment

Platform Sit

Deploymen

Reasoning Algorithms

Intelligent Selection & Filtering of Sensors

Intelligent Selection & Filtering of Sensor Data

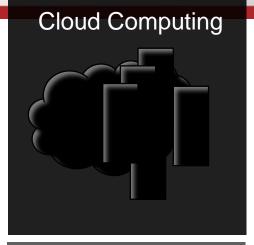
ked

ratingRestriction

Semantic Standards for sensors provide a uniform way for representing and reasoning over heterogeneous data streams

, [8	ensorInput isProxyFor of	SensingDevice	observes only	
	includesEvent some	111		isPropertyOf some
observationResult o		robservedProp	perty only	hasProperty only, some
Ot	servation	featureOfInterest only	Featur	eOfinterest

 Skelet	ton
MeasuringCapability	ConstraintBlock


OpenIoT Project (openiot.eu)

Contract No.: 287305 Objective: ICT-2011.1.3 Internet-connected Objects

EC Contribution: €2,455,000.00

Project Start Date: 1/12/2011 Duration: 36 months

Linked Data

Internet of Things

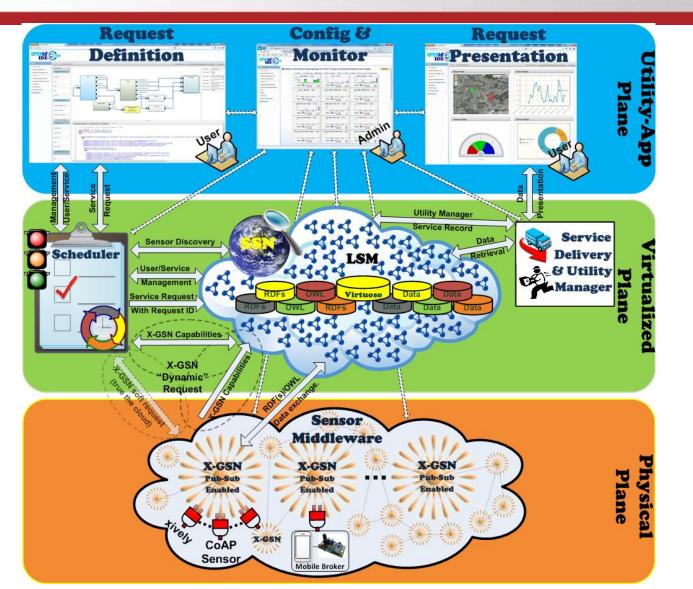
Management

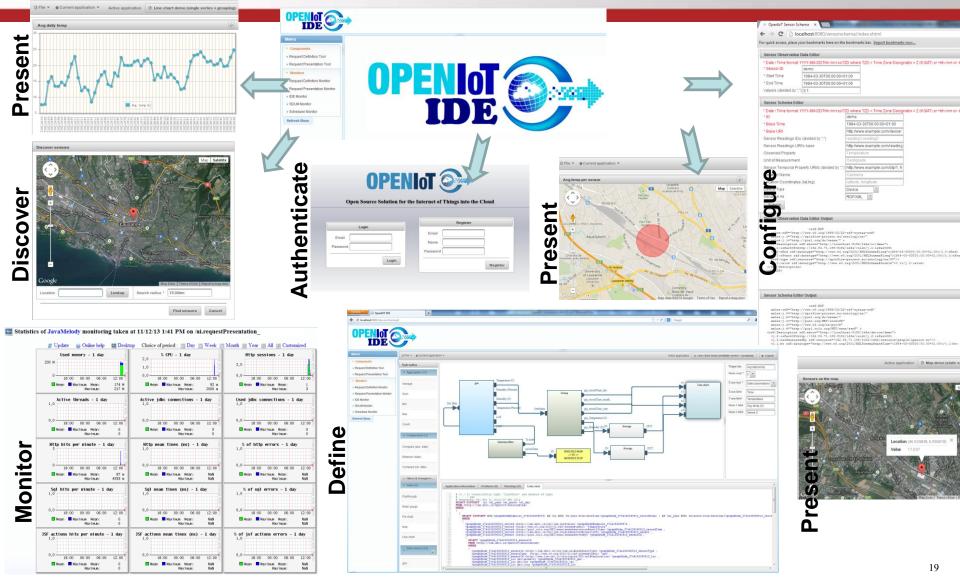
Data Privacy and Security

Sensor Mobility

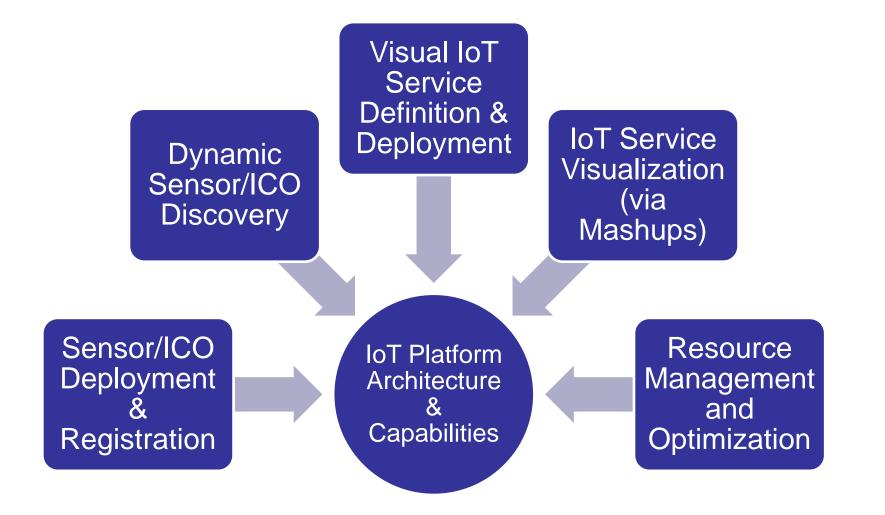
Open Source

Open Source Cloud Solution for the Internet of Thin




OpenIoT Architecture

18



OpenIoT Interoperability Architecture

What can I do with OpenIoT?

Sensor & ICO Registration

OpenIoT can integrated virtually any ICO through X-GSN

Support for both physical sensors (e.g., cameras, microphones, temp etc.) and virtual sensors (e.g., algorithm, twitter streams)

If a low level is available the process involves editing a simple metadata file

Impelementation of drivers for not supported sensors is a matter of 1-2 man days effort

Deployed ICOs publish their data according to OpenIoT (W3 SSN) ontology via LSM 💿 OpenIoT Sensor Schema 🛛 🗙 🦲

← → C 🗋 localhost:8080/sensorschema/index.xhtml

For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...

Sensor Observation Data Editor

* Date / Time format: Y	YYY-MM-DDThh:mm:ssTZD where	TZD = Time Zone Designator = Z (if GMT) or +hh:mm or -hh:mm
* Sensor ID	demo	
* Start Time	1984-03-30T00:00:00+01:00	
* End Time	1984-03-30T00:00:00+01:00	
Value/s (divided by ",")	0.1	

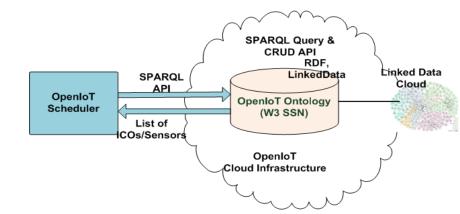
Sensor Schema Editor

* Date / Time format: YYYY-MM-DDThh:mm:ssT.	ZD where TZD = Time Zone Desig	nator = Z (if GMT) or +hh:mm or -hh:mm
* ID	demo	
* Base Time	1984-03-30T00:00:00+01:00	
* Base URI	http://www.example.com/device/	
Sensor Readings IDs (divided by ",")	reading1,reading2	
Sensor Readings URI's base	http://www.example.com/reading	
Observed Property	Temperature	
Unit of Measurement	Centigrade	
Sensor Temporal Property URI/s (divided by ",")	http://www.example.com/stp/1, ht	
Location Name	Canberra	
Location Coordinates (lat,lng)	latitude, longitude	
Device Type	Device *	
Serialise As	RDF/XML *	
Submit		

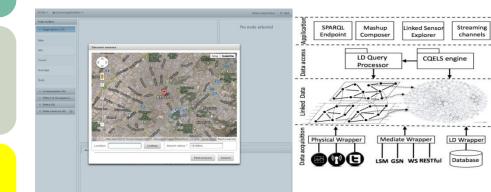
Sensor Observation Data Editor Output

```
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22~rdf-syntax~ns$"
xmlns:j.0="http://pitfire=project.eu/ontology/ns/"
xmlns:j.1="http://putl.org/dc/terms/"
xmlns:j.1="http://putl.org/dc/terms/"
</df:Description rdf:shout="http://localhost:8182/ld4s/ov/demo">
</df:Description rdf:shout="http://localhost:8182/ld4s/ov/demo">
</df:Description rdf:shout="http://localhost:8182/ld4s/ovid<//df:description">
</df:Description rdf:shout="http://localhost:8182/ld4s/ovid</df:description">
</df:Description rdf:shout="http://localhost:8182/ld4s/ovid</df:description">
</df:description rdf:shout="http://localhost:8182/ld4s/ovid</df:description">
</df:description rdf:shout="http://localhost:8182/ld4s/ovid</df:description">
</df:description rdf:shout="http://good/2001/XMLSchemationg">184-03-30T00:00:00+01:00</df:description">
</df:description rdf:shout="http://good/2001/XMLSchemationg">184+03-30T00:00:00+01:00</df:description">
</df:description rdf:shout="http://good/2001/XMLSchemationg">184+03-30T00:00:00+01:00</df:description">
</df:description rdf:shout="http://good/2001/XMLSchemationg">184+03-30T00:00:00+01:00</discription rdf:shout="http://good/2001/XMLSchemationg">1984+03-30T00:00:00+01:00</discription</discription</discription"></discription rdf:shout="http://good/2001/XMLSchemationg">1984+03-30T00:00:00+01:00</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</discription</di>discription</disc
```

<j.0:value rdf:datatype="http://www.w3.org/2001/XMLSchema#double">0.1</j.0:value>
</rdf:Description>


```
</rdf:RDF>
```

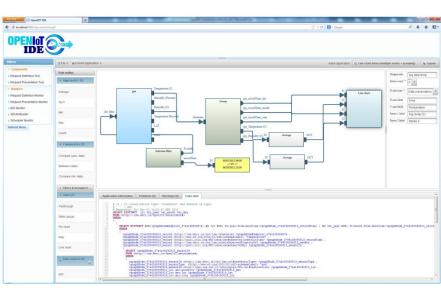

Dynamic Sensor & ICOs Discovery


Dynamic ICOs and Sensors Look-up Takes place through the Scheduler

Discovery Citeria including ICO/sensor type and location

The Discoverer component (LSM) is deployed in the cloud

SPARQL is used for accessing both sensor data and meta-data (dynamically)

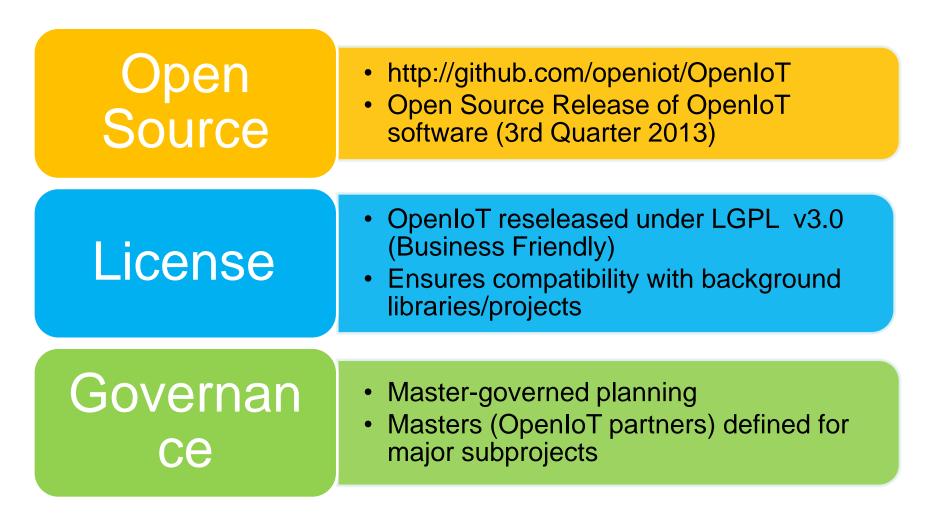


Visual IoT Service Definition & Development

OpenIoT provides the means for dynamically selecting sensors/ICOs and synthesizing their data into services

The «Request Presentation» visual tool (part of OpenIoT IDE) provides a zeroprogramming interfaces

The tool enables validation and deployment of the service



Select Sensors/ICOs

Filter & Combine Sensors/ICOs Select Sinks for Visualization/Presentation Validate & Deploy on OpenIoT middleware

OpenIoT is an Open Source Project

OpenIoT at github

As •	of 22/01/2014 (960 commits	OpenIoT ha		ostly written in J st commit in Ap		COCOMO mode estimated 28 m	el: an-years of effort
·	Version			Blank Lines	Comment Lines	Code Lines	Total Lines
	OpenIoT v1.0 tota	al Lines (22/01	/2014)	23,491	34,081	109,517	177,621
	OpenIoT new tota	al Lines		8,314	10,652	37,997	58,044
	Other non-Openic CUPUS)	oT total Lines	(XGSN +	15,177	23,428	71,520	110,125
	Other non-Openic	oT new Lines	21,120	1,021	3,327	5,114	9,452
	JavaScript	18,938	4,283	18.4%	3,174	26,395	15.8%
	CSS	9,049	186	2.0%	1,457	10,692	6.4%
	XML	7,548	1,597	17.5%	1,152	10,297	6.2%
	HTML	632	55	8.0%	78	765	0.5%
	XML Schema	435	95	17.9%	85	615	0.4%
	SQL	239	134	35.9%	89	462	0.3%
	XSL Transformation	139	2	1.4%	11	152	0.1%
	shell script	23	3	11.5%	9	35	0.0%
	DOS batch script	10	0	0.0%	1	11	0.0%
	Totals	109,517	34,081		23,491	167,089	25

OpenIoT awarded Open Source Rookie by Black Duck

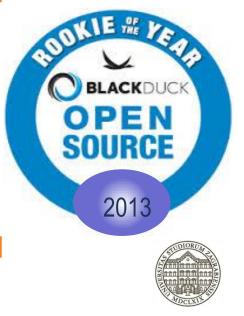
OpenIoT project receiver of the "Black Duck Rookie of the Year OpenIoT Architecture An Open Source Cloud Solution for the Internet of Things http://www.blackducksoftware.com/news/releases/ STREP 287305

https://github.com/OpenIotOrg/openiot

BLACKDUCK

Perceptum ex Optimu:

🗾 Fraunhofer 🕯


IOSB

AIT

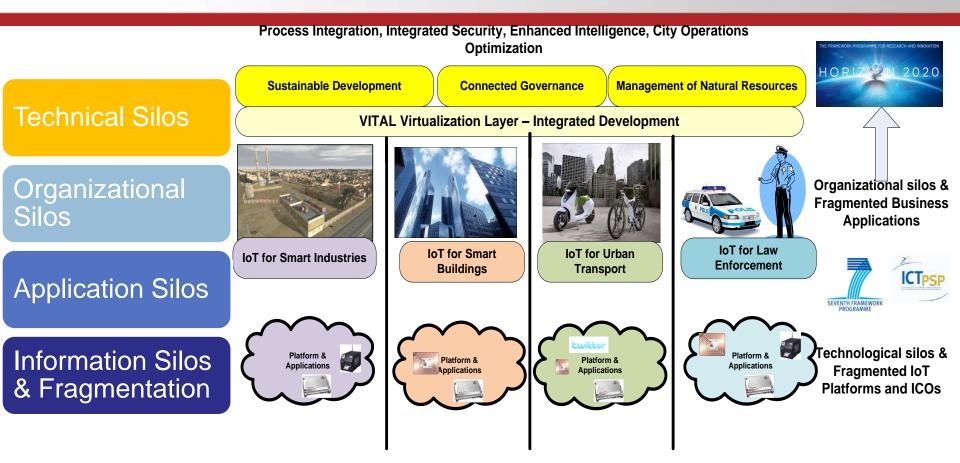
OF EXCELLENCE FOR RESEARCH AND EDUCATION

across*limits*

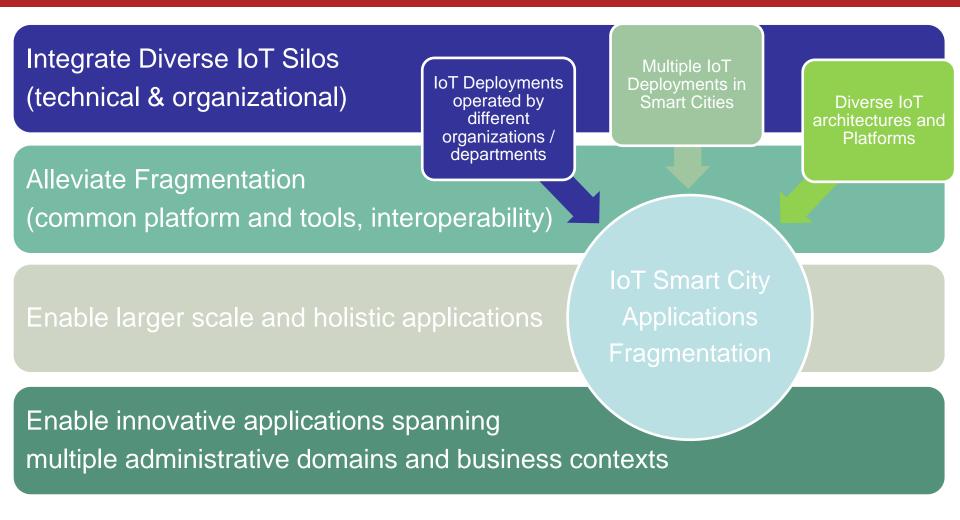
CENTER

26

CSIRC

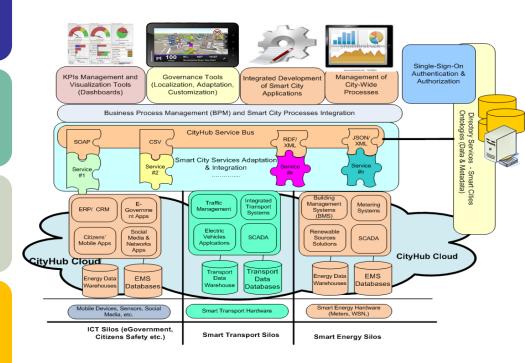

FP7 VITAL Project (www.vital-iot.eu)

The **VITAL** project (EU FP7 - 608682) is financially supported by the European Union Seventh Framework Programme (FP7 2007)


Integration for Smart City Silos

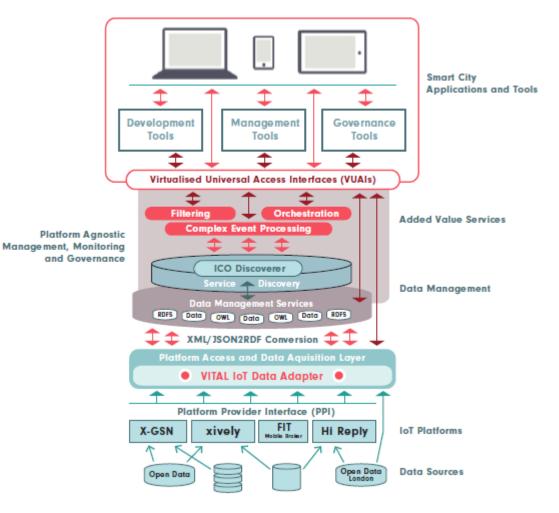
Fragmented ICOs Access, Fragmented Intelligence, Fragmented Security, Limited Data Sharing, Limited Integration

VITAL Goals

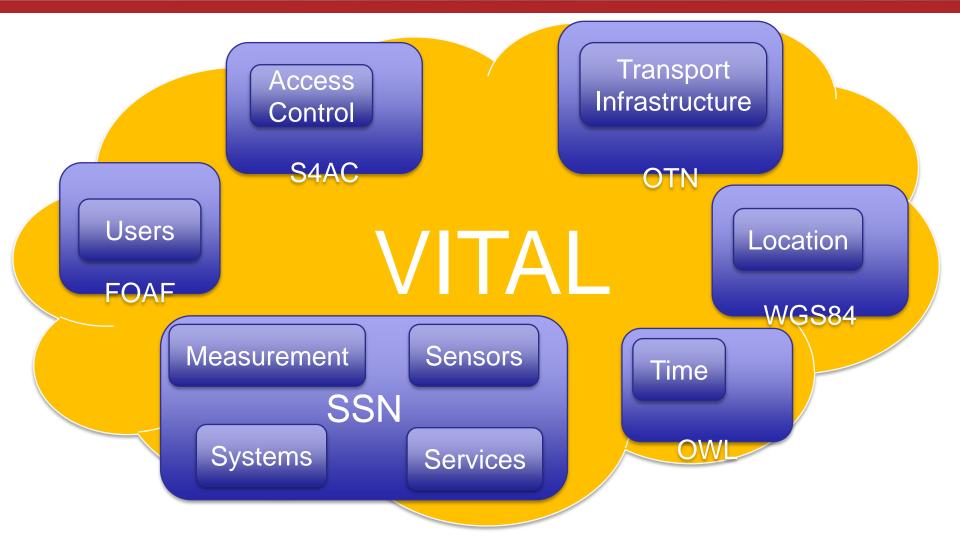

Smart City Operating Center

Control Center integrating all systems and projects in the smart city

Control Center = Software Middleware and Processes


Example #1: Integrated Performance Management – Calculate CO2 saving across all different energy projects

Example #2: Repurposing and reusing smart city infrastructures across multiple applications

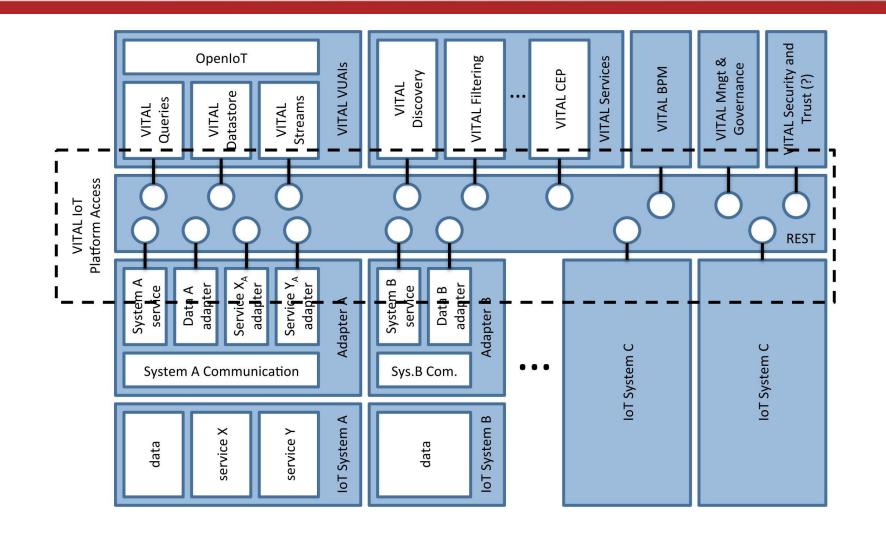


VITAL Architecture

VITAL Ontologies

Sample PPI Primitives

	Get IoT system metadata			
Description	VITAL pulls fro	/ITAL pulls from an IoT system its metadata.		
URL	BASE_URL/ext	ASE_URL/external/metadata		
Method	POST			
Request headers	Content- Type	application/ld+json Of application/json		
Request body		: "http://vital-iot.org/contexts/query.jsonld", vital:iotSystem"		
Response headers	Content- Type	application/ld+json Of application/json		

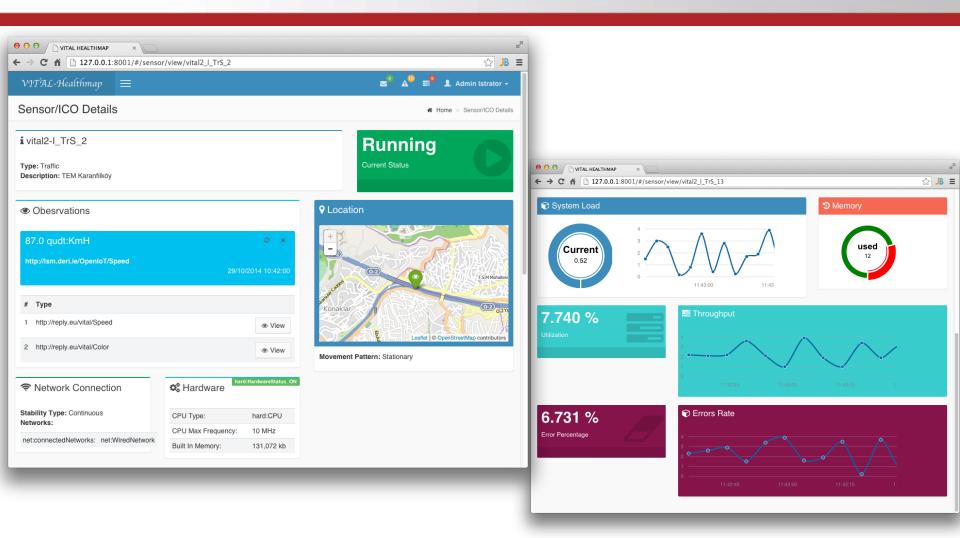


Sample PPI Primitives

Response body`	Example
	<pre>{ "@context": "http://vital-iot.org/contexts/system.jsonld", "uri": "http://www.example.com", "name": "Sample IoT system", "description": "This is a VITAL compliant IoT system.", "operator": "http://www.example.com", "serviceArea": "http://dbpedia.org/page/Camden_Town", "status": "vital:Running", "providesService": </pre>
	<pre>[[[[[[[[[[[[[[[[[[[</pre>
	{ "type": "GetMetadata", "hrest:hasAddress": "http://www.example.com/ico/metadata", "hrest:hasMethod": "hrest:POST" }]
	<pre>}, { "@context": "http://vital-iot.org/contexts/service.jsonld", "type": "ObservationManager", "msm:hasOperation": "</pre>
	[{ "type": "GetObservations", "hrest:hasAddress": "http://www.example.com/observation", "hrest:hasMethod": "hrest:POST"
))) }

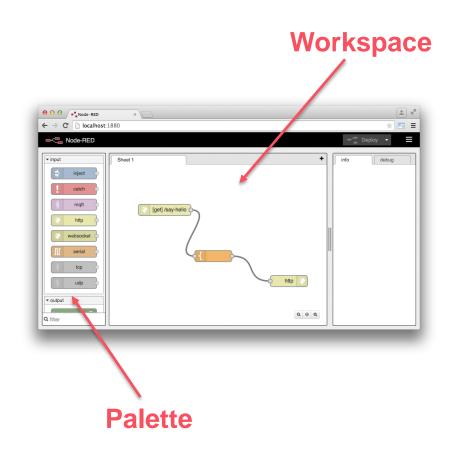
IoT Platform Access & Platform Providers Interfaces

VITAL Management Module



The Management & Governance Web UI provides a unified view of the health and operational status of systems, services, sensors, VITAL modules, etc...

Helis, Admin Drive	ICO Details			# Hane > 100 D			
Search	i Temperature Sensor	vital:Runnin					
IObsServors TE UX Vitup							
B IsT/Services	Obestructions QLocation						
6 Vial Systems	1 700	1. http://					
🖞 Calendar 🛛 🧧	1 Mp./fam.deri.ie/Openkotlight						
B Maitex	2 http:/fam.doi.ie/Openio/Temperat	une					
	The Network Connection	0 [°] Hardware	undergrafitation (N	Landard & Construction and Adv			
	Stability Type: Continuous Networks:	CPU Type:	hard CPU	Novement Pattern: Stationary			
	netcomected/letworks: net/WiredNet	CPU Max Prequency:	10 MHz				
		Built In Memory:	131,072				

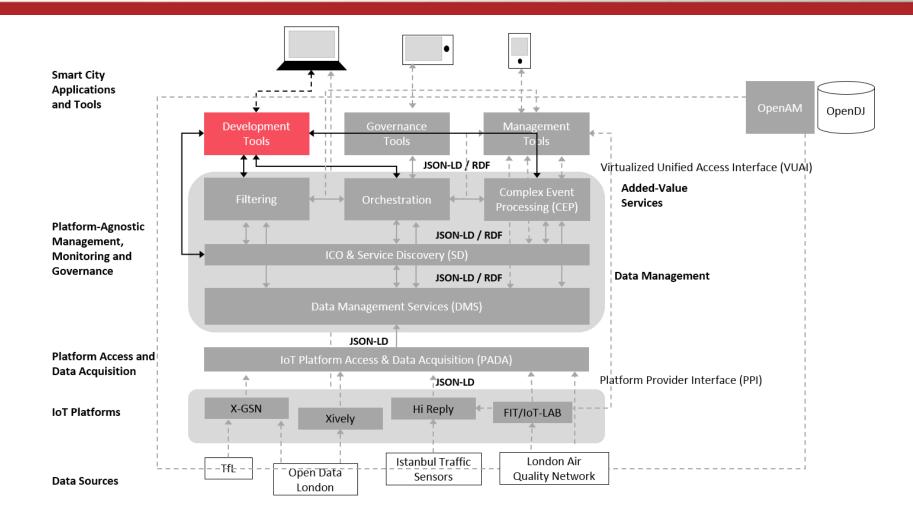

VITAL Management Modules UI

Node-RED Editor (nodered.org)

- Browser-based tool for designing flows
- Drag nodes from the palette and drop them into the workspace
- Wire the nodes together to create flows
- Flows are represented and stored using JSON

Node Examples

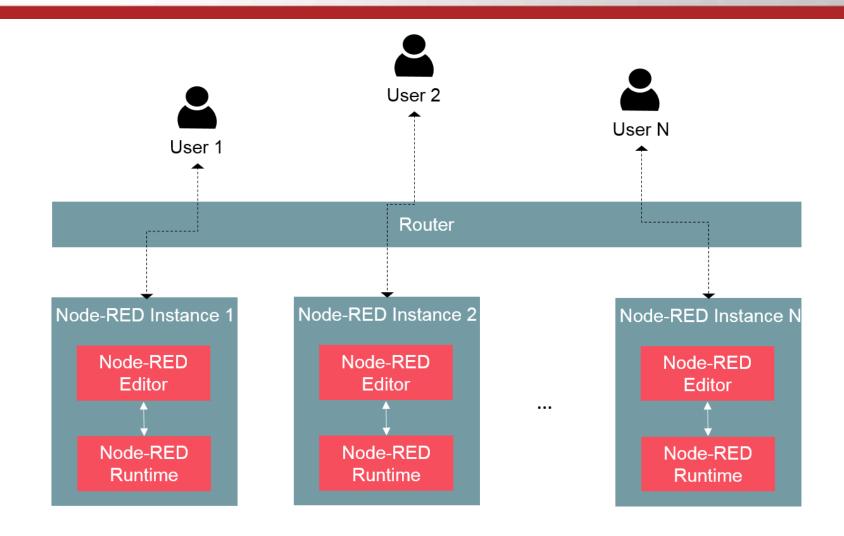
- http request:
 - Makes HTTP requests
- function:
 - Represents a function block written in JavaScript
- mqtt out:
 - Connects to an MQTT broker, and publishes a message to a topic
- twitter in:
 - Searches either the public or a user's stream for tweets containing a specific term, or all tweets by specific users, or direct messages received by a user



Node-RED Runtime & Extensions

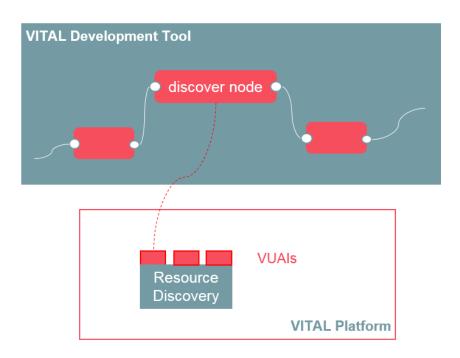
- An environment for executing flows (built on Node.js)
 - Creates, starts and stops nodes
- During its lifetime, a node may:
 - Receive messages from up-stream nodes
 - Do some work
 - Send messages to down-stream nodes
- The node palette is extensible
 - Search for new nodes in the Node-RED Library and the npm (node package manager) repository, or write (and even package and publish) your own nodes
- Each node comprises two files
 - a JavaScript file that defines its runtime behaviour
 - an HTML file that defines how the node appears in the editor

VITAL Development & Deployment Environment

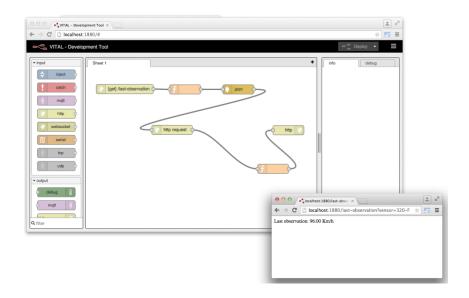


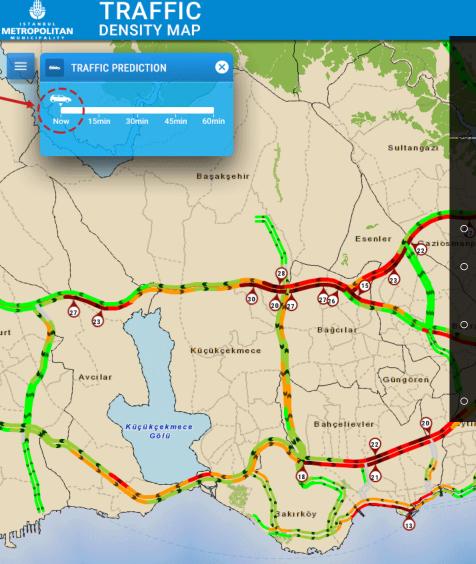
Node-RED Customization to VITAL Needs

- Based on Node-RED
- Enhanced with R
- Overcomes the user-less nature of Node-RED by creating and deploying a dedicated Node-RED instance for each VITAL user
- An extra component takes care of the mapping between users and Node-RED instances (the router)


Node-RED Architecture for VITAL

Implementation of Nodes for VITAL Components


- VITAL toolbox = a set of VITAL-related nodes
- One node for each piece of functionality exposed by a VITAL component
- Hide implementation and formatting details from developers



Example: Sample Workflow

A web service that accepts HTTP GET requests, which contain the **ID** of a traffic sensor in the query string, and responds with the last observation made by that sensor.

Traffic Management in Istanbul

TRAFFIC PREDICTION

Current State

- Traffic prediction up to an hour based on 15min intervals
- Current traffic measurement data & latest 4-week traffic data are used.
- Not very sensitive and adaptive to changes in traffic speeds. Prone to make errors when it starts to get congested or when it tends to get free flow.

68

taşehir

(adıköy

Weather conditions are not taken into consideration.

Marmara Denizi

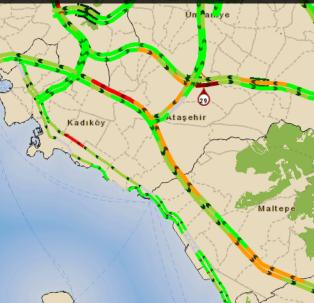
Traffic Prediction

VITAL platform

helps Istanbul to make more consistent and accurate traffic predictions by taking both traffic measurement data, weather observation data & local events data into consideration.

VITAL helps improve the quality of traffic services provided by Istanbul Metropolitan Municipality

ă **€ У ₫ 8**⁺

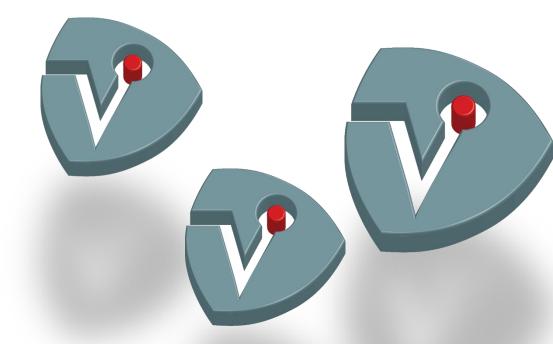

Free

TRAFFIC PREDIC By UTILIZING VITAL F

By applying Data *I* Techniques on IMM weather data

o Trafffic prediction up to a week or mo

 Traffic sensor data, weather obser management data, mobile application be taken into consideration to make consistent & scientific predictions.

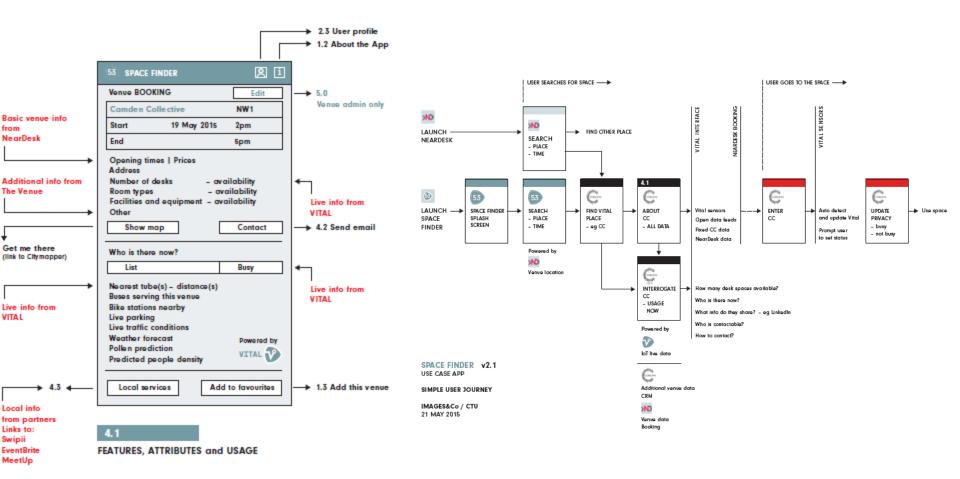


Incident Detection

VITAL platform will

ease the task of identifying incidents which adversely affect traffic in Istanbul.

Traditional way of observing traffic cameras & identifying events will be automated.



Traffic operators will take advantage of being notified about incidents.

Smart Working (Camden Borough of London)

VITAL Project Web Site & Social Media

VITAL Web Site: <u>http://www.vital-</u> iot.com

All our (public) deliverables and publications are accessible there!

Subscribe our newsletter!

Stay tuned for VITAL "Smart Cities" Hackathon, 3rd Quarter 2015

y in f

Follow us on Twitter: @VITALfp7

Join our "VITAL" discussion group on LinkedIn!

Like our "VITAL Project" Page on Facebook!

Smart Cities and Social Media

Social Media provide millions of insights on human activity and behaviour during emergencies and security incidents

Examples: London Riots (Twitter), Egypt (Twitter/Facebook), but also «Sandy» Storm (20M Tweets, 10 Instagram photos / sec)

Relevant Technologies: Sentiment Analysis, Community Tracking, Rumour Spreading Detection,...) - Used in several industries (marketing, branding, finance...)

IoT architectures and technologies support «Social» Sensors (as Virtual Sensor)

Twitter Sentiment Analysis On-line: http://www.sentiment140.com/

Social Media provide millions of insights on human activity and behaviour during emergencies and security incidents

Examples: London Riots (Twitter), Egypt (Twitter/Facebook), but also «Sandy» Storm

(20M Tweet

Relevant Detection,

IoT archite

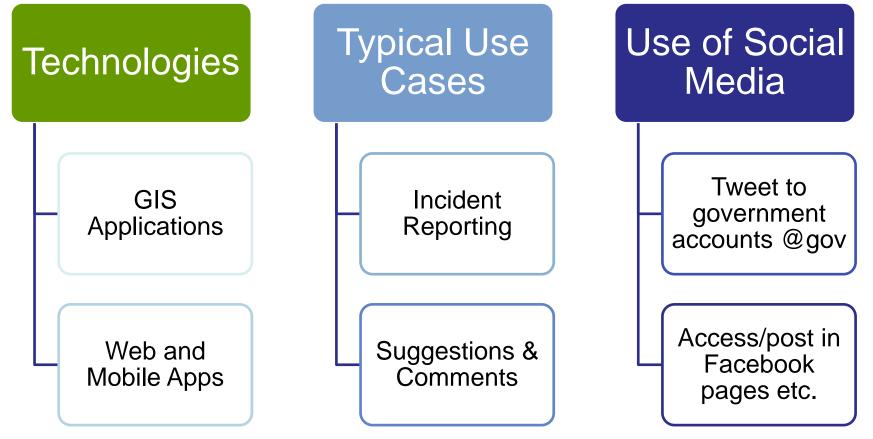
Twitter http://w

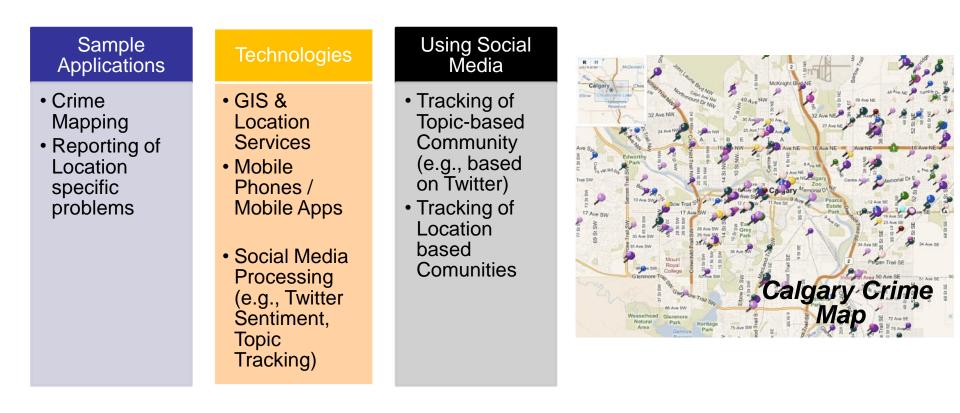
IoT architectures deal with the proliferating «Social» Sensors

ding

Section of the set of the first of the first

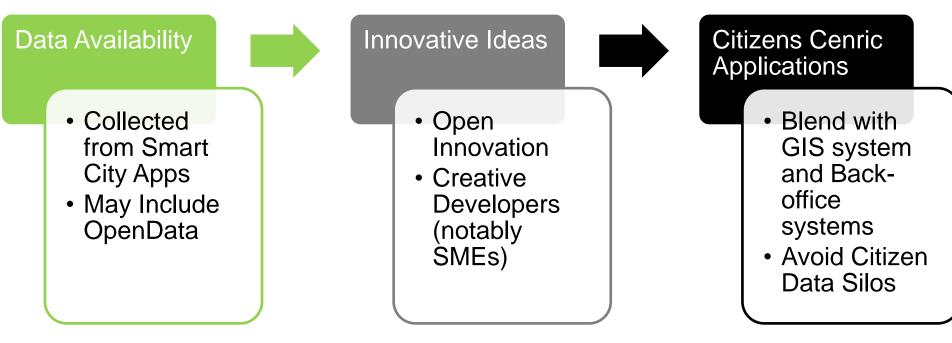
Smart Cities and Citizen Engagement


- Citizens Engagement is a key to personalizing smart city services
 - Turning a smart city to a social, personalized and more effecive city
- Multiple Forms of Citizen Engagement Exist
 - Supported by IoT and Social Media


Citizens-as-Sensors

Citizens can act as sensors to connect with governments and help the latter understand their wishes and needs

Community Consolidated Community FOR RESEARCH AND EDUCATION Feedback


Connect/Consolidate Citizens Data in Given Geographical Areas – Aggregate Citizen Generated Mapping

AIT OF EXCELLECE ITIZEN CENTRIC Apps

Enable Personalized Citizen-Centric Services using Location Information and based on Processing of Smart City Data



- Open Data Sets == Key enak for open innovation / novel ε
- Examples: London Data Stor Glasgow Data

ACTIVE TRAVEL

EDUCATION



ECONOMY

Sing IoT & Social Media to Connect FOR RESEARCH Citizens with Stakeholders

Social View of Citizens Engagement

Consulting and Involving Citizens in Urban Planning and Smart Cities Design

Privacy – Security - Ethics

Trasparency and Engagement

Including Open Data

Usability key to acceptance

User Interfaces and Apps

Public Policy and Regulation

· Keeping up with technological development is essential

Training Citizens

• Key success factor, especially for younger generations.

AIT CENTER OF EXCELLENT ACKNOWLEDGEMENTS

Research Cluster on the Internet of Things Develops EU approach to IoT technologies

FP7 VITAL Project

 VIRTUALIZED PROGRAMMABLE INTER-FACES FOR INNOVATIVE COST-EFFECTIVE IOT DEPLOYMENTS IN SMART CITIES

FP7 OpenIoT Project

Open Source Internet-of-Things

Thank You!

Questions

